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A hyperscaling relation in site-bond correlated percolation 
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Department of Physics, University of California, Santa Barbara, California 93106, USA 

Received 19 April 1983 

Abstract. A novel approach is used to construct a field theoretical model of site-bond 
percolation. The exponents U and 1) are calculated in an E = 6 - d expansion for both Ising 
and percolation fields, and the scaling relation v P = 2 / ( d - 2 )  is demonstrated to hold to 
order one loop for d > 4. Using the equations of motion, the scaling relation up = 
2/ (  d - 2 + 7,) is shown to hold to all orders, extending below four dimensions. Although 
this scaling relation is shown to fail for d = 1 + E ,  it is argued that i t  is still valid for d B 3. 

1. Introduction 

Correlated or site-bond percolation is a model of the sol-gel transition when solvent 
effects are present (Coniglio er al 1979, Tanaka er af 1979). In this model, clusters 
consist of bonds which form only between occupied sites of a lattice gas. Two types 
of critical behaviour (Ising and percolation) are therefore present. Below the Ising 
critical point ( T < T,), this model is in the same universality class as ordinary percola- 
tion. In this paper we are interested in critical exponents about the special point where 
both Ising and percolation systems are at criticality ( T = T, and p = p, ) .  

Previously, this model has been studied using a Migdal approach to a Potts model 
(Coniglio and Klein 1980). This Potts model Hamiltonian has also been transformed 
into its field theoretic version and the critical exponents obtained within the E expansion 
(Coniglio and Lubensky 1980). 

In this paper, we treat the problem using a novel field theory, and rederive and 
extend the results of Coniglio and Lubensky. In particular, we derive a result for the 
exponent v p  = v l ,  which describes the behaviour of the percolation correlation length 
Z as p + pc at T = T,, in terms of pure Ising exponents, which we expect to be exact at 
d = 3, the physical dimensionality. 

In § 2 we derive the field theory which serves as our model, then in § 3 we calculate 
the exponents v and 7 within the E expansion. It is also in § 3 that the relation between 
the exponents is obtained. Finally in § 4 we use a Migdal approach to the problem to 
check results in low dimensions. 

2. Description of model 

Site-bond percolation or correlated percolation is a model of the sol-gel transition 
when solvent effects are present. In ordinary bond percolation all sites are occupied 
and bonds are occupied at random with probability p.  Clusters then consist of sites 
connected by occupied bonds. In site-bond percolation the sites can also be vacant 
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or occupied with probabilities determined by an Ising or lattice gas Boltzmann factor 
(i.e. thermal averaging). Bonds can only be present between occupied nearest neigh- 
bour sites, and bond percolation is considered on the occupied lattice. 

The correspondence with the sol-gel transition in the presence of solvent is made 
by considering vacant sites to  be solvent molecules, and occupied sites to be monomers 
which can form chemical bonds. The percolating network of monomers is then the 
gel phase. 

In ordinary percolation the pair correlation function G(rl ,  r2)  is the probability of 
percolating from rl to r2 irrespective of the other sites in the lattice. To obtain G a 
simple set of diagrammatic rules suffices (Essam 1980). 

(1) Form diagrams by placing oriented bonds on the lattice in such a fashion that 
from each site in the diagram it is possible to reach r2 by following the arrows forward, 
and rl by following the arrows backward. 

(2)  No closed loops of arrows are allowed. 
(3)  Insert a factor of p for each link in the diagram. 
(4) Insert a factor of (-1) for each loop in the diagram, or alternatively assign a 

factor of -in for each vertex where n bonds meet. 

G is then the sum over all such diagrams on the lattice. Rule 2 is necessary because 
any diagram with a closed loop of arrows can be constructed more simply. Rule 4 is 
to avoid multiple countings. For example, in figure 1 the diagram ( a )  counts all 
configurations where bonds A B 1  and BIC are present irrespective of whether A B 2  
and B 2 C  are present. Conversely for diagram ( b ) .  The diagram (c)  must then be 
subtracted off to avoid double counting. 

(a1 (bl ( C )  

Figure 1. Diagrams contributing t o  G(x,  x +  1). Diagrams ( a )  and  ( b )  give contributions 
+ p 2  while (c )  gives a contribution -p4. 

In the site-bond percolation model, the sites of the lattice form a lattice gas. The 
occupation number of site i is n, with possible values n, = 1 (site occupied) or n, = 0 
(site vacant). The probability for a site to be occupied is determined by a Boltzmann 
factor. The set of diagrams for percolation can only be constructed on the lattice of 
sites which are occupied. The lattice diagrams are then thermally averaged. 

A formal expression for G can be obtained if we define the commuting operators 
u ( r )  and d ( r )  at each site r and an operation Tr such that at any site r 

u 2  = ia, d 2 =  ia, 

Tr a =Tr  d =0, Tr ad = n. 

Using these operators G becomes (without thermal averaging) 

G(rl, 4 = T r P a ( r J  fl [1 +~d( r , ) a ( r j ) I f i (d  
l inks  

1. i 



Hyperscaling relation in site-bond correlated percolation 181 

where P is an operator which destroys all diagrams with closed loops of arrows. 
Diagrams are created from the operators d ( r , )  and a ( r l )  (where r, and r, are nearest 
neighbour links) by placing a bond on the link directed from rl to r,. When taking the 
product over all such possible links, each term in the product gives rise to two sets of 
possible diagrams: one in which the link is present (which gives a factor p )  and one 
in which the link is absent (which gives a factor 1). The operation Tr then eliminates 
diagrams which have vertices with any number of bonds going into a site and none 
coming out, or any number of bonds coming out of a site but none going in. 

The product over links can be exponentiated as 

where A =-ln(1-p), c7(rl)=cii and a(r l )=a, .  
form as 

The exponent can be written in matrix 

(2.4) 
1.1 

where cl] is a matrix which accounts for the nearest neighbour interaction A and 
depends on the lattice structure. We can write this exponential as a field theory via 
a Gaussian transformation (Amit 1978). Introducing scalar fields cp(r) and @ ( r )  and 
Gaussian transforming, G becomes 

where cp, = cp( F l ) ,  Cp, E Cp( r , ) ,  and as before, P destroys all diagrams with closed loops 
of arrows. 

The matrix e-' is the inverse of c, the leading elements of which are 

z-I( 1 - C V + .  . .). (2.6) 

The operation Tr in (2.5) is explicitly carried out in appendix 1, § A l . l .  The result 
Here z is the coordination number of the lattice and c is a constant. 

is 

xexp-C{c1vcpl I - ~ ~ , + ~ 2 ~ p ~ ( ~ , + n ~ [ c p ~ ~ p ~  - t i ( cp ,~pf  + ~ p ~ c p f ) I I .  (2.7) 

Note that this is simply the (nlcp1n2Cp2) correlation function with weight function 

~ ( c p ,  4)  = -C clvcp, - VQ, + c 2 ~ ~ c p ~  + n1[cplcp, -ti(cp,Cpf +w?)I. (2.8) 
Higher-order derivatives and interaction terms in cp and Cp higher than cubic are not 
shown in (2.7) and (2.8). Note that if all the n, are set to one in (2.7) it corresponds 
to ordinary percolation. This becomes apparent if we consider the Feynman diagrams 
arising from (2.7) with all the n, set equal to one as in figure 2. These diagrams are 
topologically equivalent to the diagrams for percolation constructed on the lattice. 
Finally, it is important to note that by including the operator P we ensure that the 

exp[A(cp, Cp)l where 
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Figure 2. Lowest-order Feynman diagrams arising from (1.7) with all ni set equal to one. 

diagrammatic weights associated with each Feynman diagram are the same as those 
obtained in the corresponding diagrams of the 4 + 1 limit of the Potts model (Fortuin 
and Kasteleyn 1969,1972). We have explicitly checked this to the order of four loops. 

To complete the model we need to thermally average over the lattice gas terms in 
G. To do this write the lattice gas spins ( ni)  as Ising spins (si) related via 

n, = t(  s, + 1 )  (2.9) 
and average G with the Boltzmann weight ( Z , )  

This term can be written in terms of a matrix fi as 

Z, = exp C s,fiijsj . ( i.j ) 

(2.10) 

(2.11) 

Introducing a scalar field x( r )  and Gaussian transforming, Z I  becomes 

z, = j ax exp( -C ixxlfi;lxl + c sx,) (2.12) 
1.1 

where fi-' is the inverse of fi and has leading terms 

f i - '=z - ' ( l - cV2+ . .  , ) .  (2.13) 

Again, z is the coordination number of the lattice and c is some constant. 

obtain 

(G(rl ,  r 2 ) ) = P  1 9q9+9x exp(-T c , V q , *  ~ ( D , + c 2 q , ~ l + c ~ ~ V x , ) 2 + ~ ~ ~ x , ~ 2 )  

Inserting the Boltzmann weight (2.10) into G and writing the n, in terms of s, we 

X cp(rl)dr2) Tr ( ~ 1 ~ 2  + sI + ~2 + 1) 

xexp t~ ( s , + l ) [ ( o , ~ , - t i ( c P , ~ f + ~ , c P ~ ) ~ + ~  uI). (2.14) 

The trace over s is carried out in appendix 1, § A1.2. Going over to the continuum 
( 1  

limit the result is 

(G(rl ,  r 2 ) )  = P % 9 4  gx drl)45(r2) 

xexp( - ddr[cl(vp - V d  + c2@ + c3(Vx)' t c4,y2] 

(2.15) 
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This is an important result, since from this we can infer the Lagrangian for this theory 

S ( 9 ,  + , X I  = ddr[(Vp. V + . ) + t ( V ~ ) ~ + m , c p + + m , ~ ~ + t i g ( c p + * + + c p ~ )  

+ u~cp++ ~ , y ~ + $ h ~ ( c p + ~ + + c p ~ ) +  kx2cp++ mcp2+2+$n(cp+3++cp3)l. 
i 

(2.16) 

This also defines the coupling constants associated with each interaction term. Using 
this Lagrangian we can apply the renormalisation group and obtain the critical 
exponents Y and 7 for both the Ising and percolation fields. 

3. Renormalisation group in E expansion 

Having obtained a Lagrangian for this theory (1.16), we can apply the renormalisation 
group (RG) within the E expansion and obtain the critical exponents U and 7. A 
program for such calculations can be found in several sources (Amit 1978). 

The upper critical dimensionality ( d , )  of a theory is found by considering the 
canonical dimension of the lowest order coupling. From (1.16) we see that g and U 
are cubic couplings and so d, = 6. The expansion parameter, E ,  is therefore given by 
E = 6 - d. Also by dimensional considerations, we can see that fourth- and higher-order 
couplings are irrelevant for d > 4, at the Gaussian fixed point. 

Since there are two independent fields involved in the Lagrangian, there are two 
sets of critical exponents Y and 7 which can be obtained. To distinguish between these 
two, the subscripts 1 and 2 will be used. Subscript '1' will refer to percolation terms 
while subscript '2' will refer to Ising terms. 

The P functions are defined as 

( 3 . l a )  

(3 . lb)  

where A is the cut-off which regularises the theory, the subscript '0' refers to the 
dimensionless bare coupling constant, and the subscript 'R' refers to the dimensionful 
renormalised coupling constant. 

Again since there are two independent fields, the vertex functions will be written 
as r(N*M) where N implies the number of truncated percolation propagators and M 
implies the number of truncated Ising propagators. It is important to note that 
is not a composite vertex function. Composite vertex functions will be designated 
r(N3L.M.K) where L refers to the number of insertions of cp+ into percolation ((p) lines, 
and K refers to the number of insertions of xz into Ising ( x )  lines. 

The renormalised vertex functions can be written as 

(3.2) 
Here Z, and Zx are the field renormalisation constants for the percolation field and 
the Ising field respectively. These in turn are defined from the normalisation conditions 

(a/a(k2))rg~u1'/ , , ,  = 1, (a/a(k2))r:.2)1,,, = 1 (3.3a, b )  

r k N . M l  = z N / Z z M / Z r ( N , M J  
' F x  

where x is the normalisation point. Using (3.3a) and (3.3b) we obtain respectively 

Z, = [ (d/d(  kz))r'2."']-', z, = [ ( a l a (  k2))r(o.21]-1. (3.4a, b) 
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The diagrams contributing to r(230) to order one loop are shown in figure 3. The first 
correction to rC0*') is of order two loops. It is important to note that the renormalisation 
of the Ising field contains no percolation fields, since there can be no closed loops of 
arrows. This occurs to all orders in perturbation theory. - 

Figure 3. Feynman diagrams contributing to the vertex function rCz,O1 to order of one loop. 

Doing the Feynman integrals of the diagrams to order of one loop we obtain 

Z ,=1+A(A) (~g2- fu2) ,  (3.5a) 

z, = 1, d > 4  (3.5 b) 

The renormalised coupling constants gR and uR are defined from the normalisation 
where A(A) = ( 4 ~ ) - ~  In ( A / % ) .  

conditions 

R -  R 'p ISPt (3.6) 

uR = rg.1) = (3.7) 2, ISP? 

k, - k, =$x2(4SI, - 1). (3.8) 

- r (3 ,O)  = z3/2r(3,fl) 

1/2  ( 2 , l )  

where the momenta k, are chosen at a symmetry point (sP). That is 

The diagrams contributing to 
figure 4. 

and r(2,11 to order of one loop are shown in 

Figure 4. Feynman diagrams contributing to the vertex functions ( a )  r(3.0) and ( b )  r(*,l' 
to order of one loop. 

Doing the Feynman integrals for r(3,0' and using ( 3 . 5 ~ )  and (3.6) we obtain 

gR = A F'2g0[ 1 + A (A) ($U: - ig:)]. (3.9) 

Similarly for F'2,1) and using (3.5b) and (3.7) we obtain 

UR = Af'2U~l[l +A(A)($ui-&g)]. (3.10) 

These give for the /3 functions 

(3.1 l a )  

(3.1 1 b) 

3 7 2  P,(go, 4 1 )  = -tEgo+[g0/(47d l(ago-M), 

pl,(go, U ( J  = -tEU~l+[Uo/(4.n)-l(,g" 3 U o ) .  
7 5 2 - 2  2 
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The fixed point occurs when pg = p,, = O .  Equations (3.11) have three fixed points: 
(i) the percolation fixed point with u0 = 0 and g i  = 2 ~ / 7 ( 4 ~ ) ~ ,  (ii) an unphysical fixed 
point with go = 0 and U: = - 3 ~ / 4 ( 4 ~ ) ~ ,  and (iii) a fixed point corresponding to simul- 
taneous gelation and phase separation (Coniglio and Lubensky 1980) with 

g; = (4.rr)3&, U: = 4(4T)3&. (3.12) 

The exponent vi, the anomalous dimension of the field i ( i  = 1,2) ,  is defined as 

T~ = [-A(d/&I) In Z,]* (3.13) 

where * implies that the result is taken at the fixed point. Using ( 3 . 5 ~ )  in (3.13) we 
obtain 

T I =  (47F)-3[-;g;+fU;]* (3.14) 

which when evaluated at the fixed point gives 

71 =o. (3.15) 

Similarly, using (3.56) in (3.13) we obtain the trivial result 

7,= 7 7 2 = 0 ,  d > 4 .  (3.16) 

Note that (3.16) is valid to all orders in perturbation theory for all d > 4 .  This is a 
consequence of the fact that percolation fields do not affect Ising fields. That is, Z, is 
a power series in couplings which are pure Ising, the lowest order of which, w, is a 
quartic coupling. This coupling is irrelevant for d > 4 and hence (3.5 b) and (3.16) are 
valid to all orders. Contrarily, (3.15) is not expected to be valid even to the next 
order in perturbation theory for 4 < d < 6, although we have not proven this to be true. 

To obtain the exponents v 1  and u2, we must first obtain the renormalisation constants 
Z,, and Zx2, respectively. These are defined in terms of the bare composite vertex 
functions T . ( N 3 L ; M s K ) .  The renormalised composite vertex functions can be written as 

(3.17) ( z, ) ( z,, ) I. ( z, ) ( zx2) r (N,L;M,K ) . r k N J - ; M , K )  = 

Then Z,, is found from the normalisation condition, at the scale x 

(3.18) rg.1;O.O) = 1 = ZJ - r (2 ,1 ,0 ,0 )  
9,  

i.e. 

'p, = [ z , ~ ( Z , l ; O . O ) ] - - l ~  (3.19) 

Similarly Zx2 is found from the normalisation condition 

(3.20) 
i.e. 

(3.21) 
The diagrams contributing to r(z3';0~") to order of one loop are shown in figure 5 .  

zx2 = [zxr(0.0;2.1)]-1 = [ ~ ~ 0 . 0 ; 2 . 1 ) ] - 1 ~  

Figure 5. Feynman diagrams contributing to the vertex function r(2.':0.01 to order of one 
loop. 
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From these we find 

Z,, = l-A(A)[f~i-&;].  (3.22) 

There are no contributions to I'f"30;231) to order of one loop since I'(o,2) has no contribu- 
tions to this order. Hence we find the trivial result 

zx2 = 1,  d > 4 .  (3.23) 

The critical exponents Y, ( i  = 1,2) are defined from 

v i 1  = [2-A(d/dA) In Zx2]*. (3.24a, b)  - 1  v 1  =[2-A(d/dA) In &,+I*, 
Using (3.22) and ( 3 . 2 4 ~ )  and evaluating at the fixed point we obtain 

v1 = ( 2 - & / 2 ) - 1 = + ( l + $ & ) .  (3.25) 
From (3.23) and (3.24b) we find the trivial result 

u 2 = +  (3.26) 

which is valid to all orders in perturbation theory for d > 4, i.e. this is the mean field 
result of the Ising model. On the basis of one-loop calculations using the Potts model, 
Coniglio and Lubensky ( 1980) have conjectured the relation 

v1=2/(d-2), 4 s d s 6 .  (3.27) 
This agrees with our result, equation (2.251, also calculated to order one loop. This 
can be shown to be true to all orders by noting a relation between r(',') and r(291s030) 
valid to all orders, i.e. 

(3.28) r (2 .1 )  = ur(2.1;0,0) 

Substituting this into the expression for uR and using (3.19) we obtain 

UR = U ( z , + q ) - ' .  (3.29) 
Here U is the dimensionful bare coupling constant whose canonical dimension is given 

uoA ' I 2 .  (3.30) 

Taking the natural log of (3.29) and A d/dAl,, of that result we obtain at the fixed point 

O = - $ d + 3 + ~ ; ' - 2  (3.31) 

by 
= U o ~ - d / 2 + 3  = 

or 

v1=2/(d-2) (3.27') 

as before. 
That relation (3.28) is true to all orders can be confirmed by considering the 

equations of motion. The equations of motion can be constructed from the Lagrangian 
by taking correlations of the form 

(J(% $)s2/sx),,," = o  (3.32) 

where J ( q ,  +) is some function of cp and 9, and S 3 ' / S x  is the functional derivative of 
the Lagrangian with respect to the field x. Only connected diagrams contributing to 
this correlation function are to be considered, as indicated by the subscript in (3.32). 
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To confirm (3.28) we use J of the form 
J ( c p 0 ,  cp) = +(x)cp(z) (3.33) 

and from (2.16) we obtain 
U/ Sx = - V 2 x  + m, 'x + ucp+ + 4 wx3 + $h( +so2 + cp+') + 2kx+cp. (3.34) 

The equation of motion then gives 

( V 2  - m: )(+ ( x ) x (  Y 1 cp (2)) 

= ~ ~ + ~ ~ ~ c p ~ Y ~ + ~ ~ ~ ~ + ~ ~ ~ + ~ ~ ~ x ~ Y ~ x ~ Y ~ x ~ Y ~ c p ~ ~ ~ ~  

+ $ih[(+(x) (P (Y 1 (P ( Y 1 cp(y )cp (2)) + (+ (x)  cp ( Y) cp ( Y 1 +( Y 1 cp( z))l 
+ ~ ~ C C O ~ ~ ~ X ~ Y ~ + ~ Y ~ ~ ~ ~ Y ~ C O ~ ~ ~ ~ .  (3.35) 

Above d = 4, the quartic couplings w, h and k are all irrelevant. Therefore for 

( V 2 -  m:) (+(x )X(Y)cp( z ) )  = U ( c p ( X ) c p ( Y ) + ( Y ) c p ( ~ ) ) .  (3.36) 

Since the left-hand side of (3.36) gives rise to the diagrams contributing to r'(2,1) and 
the right-hand side gives rise to the diagrams contributing to r(2.13","), equation (3.36) 
confirms (3.28) to all orders. 

Coniglio and Lubensky (1980) speculate that the relation v, = 2/ (d-2)  breaks 
down below d = 4 due to a breakdown in the classical scaling of one of the fields. In 
this theory that corresponds to the quartic couplings becoming relevant. Within a 
one-loop calculation about d = 6 ,  the couplings h and k are irrelevant even below 
d = 4 (see appendix 2). Therefore for d s 4 we shall consider only the first two terms 
on the right-hand side of (3.35). That is 

d > 4 (3.35) reduces to 

( V 2 -  m:)(+(x)x(Y)cp(z)) = ~ ~ + ~ ~ ~ c p ~ Y ~ U ? ~ Y ~ c p ~ ~ ~ ~ + ~ ~ ~ + ~ ~ ~ X ~ Y ~ X ~ Y ~ X ~ Y ~ c p ~ ~ ~ ~ .  
(3.37) 

A scaling relation can be obtained by considering how each correlation function 
in (3.37) scales. This in turn can be accomplished by considering the partial differential 
equation which arises from the statement of renormalisability of the theory. That is 
the renormalised vertex function approaches a finite limit as A + CO and therefore to 
leading order is independent of A. Hence 

A a/ail~,,~,,r~N~lv) = 0. (3.38) 

Combining (3.2) with (3.38) we obtain for the vertex function implied on the 
left-hand side of (3.37) 

( A  a / a h - T 1 - t T 2 ) r ( 2 - 1 ) = o  (3.39) 

which has solution 

@ l  ( k ) .  (3.40) 

Similarly, combining (3.17) with (3.38) we obtain for the vertex function implied by 
the first term on the right of (3.37) 

(A  a / a A - T 1 + 2 -  v ; 1 ) r ( 2 - l ; O 1 0 ) =  0 (3.41) 

r(2.1) = A V , + 7 7 2 / 2  

(3.42) 
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Finally, for the second vertex function implied on the right of (3.37) we obtain 

(3.43) (2$1) - 
[A d/iJA- 71 -;772+ ( E  -;~2)]r, - 0 

(3.44) 

The term ( E  - 77,/2) in (3.43) arises from considering the x 3  insertion in this vertex 
function. It is calculated by considering the equation of motion arising from the 
correlation 

( x 3 ( Y ) w m " " "  = 0. (3.45) 

Using (3.40), (3.42) and (3.44) in (3.37) and taking the large A limit gives the 

(3.46) 

scaling relation 

V I  +;q2 = ; E  + 771 - (2-  v;]) 

or 

V I  =2/(d-2+772). (3.47) 

Since v2 = 0 for d > 4, this reduces to vl  = 2/( d - 2) for d > 4 in agreement with (3.27). 
Thus (3.47) should be valid for all d and to all orders, if the assumption that the 
quartic couplings h and k are indeed irrelevant below d = 4 is correct. As we will 
show in 0 3, a breakdown of (3.47) does occur somewhere below d = 4 as this scaling 
relation does not hold near d = 1. 

4. Real space renormalisation group near d = 1 

To test the scaling relation v 1  = 2/( d - 2 + v 2 )  for d < 4 we consider a d-dimensional 
lattice, perform a Migdal-Kadanoff real space renormalisation group (RSRG) calculation 
(Migdal 1976, Kadanoff 1976), and evaluate at d =  1 + ~ .  To leading order in E ,  we 
expect this approximation to yield correct results. To obtain the renormalisation group 
(RG) equations we consider a lattice where nearest neighbour sites are coupled by an 
Ising (lattice gas) parameter J, and bonds between near neighbour sites are present 
with probability p .  

In ordinary percolation one considers cells in the lattice consisting of b bonds on 
an edge. Within each cell there are a total of dbd bonds. To perform a Migdal-Kadanoff 
RSRG transformation the bonds within the cell are 'moved' to the edges to form a 
super cell; that is, the edges of each super cell consist of b groups of bonds in series, 
each group containing bd-' bonds in parallel as in figure 6. The RG equation for p 
can be obtained by dedecoration of the bd bonds along an edge. Since percolation 

(0) (bl  -e (cl 

Figure 6. Bond moving in the Migdal-Kadanoff RSRG scheme. (a )  -* ( b )  bond moving 
for d = 2, b = 3. ( 6 )  -* ( c )  decimation. 
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across any one of the bd-' bonds in parallel can occur with probability p, the (rescaled) 
probability that percolation can occur across the parallel group is (Kirkpatrick 1977) 

pLar = l - ( l - p ) b d - l .  (4.1) 

The (rescaled) probability that percolation can occur across b bonds in series if the 
probability for percolation across a single bond is p is (Kirkpatrick 1977) 

(4.2) b Pkr = P  . 
Combining (4.1) and (4.2) we find that the RG equation for p in ordinary 
percolation is 

(4.3) b d - '  b p ' = [ l - ( 1 - p )  1 .  
In site-bond percolation the probability for percolation is not simply p. Given that 

the spin at one site is up (or that that site is occupied in the lattice gas model) then 
the probability for percolation to a neighbouring site is 

psb = p[e'/(e' +e-')]. (4.4) 

The second term on the right-hand side of (4.4) represents the probability that the 
neighbouring site also has spin up. Because of the nature of the bond moving scheme, 
we cannot simply substitute (4.4) for p in (4.3). Rescaling the coupling J for bd-' 
bonds in parallel we obtain 

Jbar = bd-'J. (4.5) 

The probability then for percolating across a group of bd-' bonds in parallel given 
that one spin is up is 

(4.6) 

Since there are 6 of these parallel groups in series the RG equation for p becomes 

)". (4.7) p' e" =[1-(1 -p)bd-llb( exp( b d - ' ~ )  
exp(bd-'J) +exp(-bd-'J) 

Defining r = bd-' and rearranging, this becomes 

p '=(1+e-2 ' ' ) (1+e-2" ) -b[ l - (1 -p ) ' ]b .  (4.8) 
The rescaling of J in the Ising model has been studied by Kadanoff (1976) and is given 
by 

J' = tanh-'( tanh r J )  '. 

J* 2: (2E)-' 1 In b = -3 ln(b'/2 e-*/' 

(4.9) 
The unstable fixed point of (4.9) to leading order in E is 

). (4.10) 
Using this in the terms containing J in (4.8) we find to leading order in E 

(1 + e-2'*)( 1 + e-2r'*)-b = 1 - b e-2/". (4.11) 
Therefore the unstable fixed point of (4.8) to leading order in E is 

(4.12) 
which is the same as in pure percolation. Note that to this order, the fixed points 
given in (4.10) and (4.12) are related asp* = 1 -e-*'*. This agrees with the conjecture 

p* 2: 1 - b1/2 e - l / E  
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made by Coniglio and Klein (1980) on the basis of a Potts model approach to this 
problem. The leading exponential behaviour of p*,  J* is independent of b, indicating 
the reliability of this term. 

Linearising (3.8) about the fixed point gives 

A ,  = (1 +e-2J*)( 1 +e-2r'*)-bb'+1 (1 -p*)'-'[l- (1 - p * ) ' I b - ' .  (4.13) 

Evaluating (4.13) at the fixed point (4.10) and (4.12), we find to leading order the 
eigenvalue y I  = E.  Thus 

V ]  = y;' - - 1 / E .  (4.14) 

We are now interested in obtaining the exponent v2.  A simple way to get v 2  is to 
assume that the RG equation for the magnetic field H is an analytic function of H. 
That is 

(4.15) 

where f(J, d, b )  is some function of J ,  the dimension d and the rescaling factor b. Since 
we are interested only in the lowest-order term in E ,  we expand f about d = 1: 

(4.16) 

The derivative with respect to d is taken of the function f which is evaluated at J + cx)? 

again to retain only lowest-order terms. 
The functions f(J, b, 1) and ~ ( c o ,  b, d)  can be evaluated by exact means. By the 

Nauenberg-Nienhuis (1974) criterion, at T = 0, i.e. J + 00, the magnetic eigenvalue of 
the Ising model is y H  = d. Thus A H  = bd and therefore H'  = bdH. This gives f(00, b, d) 
directly as 

(4.17) 

Similarly, in one dimension H rescales under a decimation transformation (using b = 2) 
as 

(4.18) 

H'  = f ( J ,  d, b ) H  + O( H 2 )  

f(J, b, d )  =f(J, b, 1)+af(W, b, d ) / a d l d = l E .  

f ( 0 0 ,  b, d )  = bd. 

H '  = H (  1 + tanh 2J).  

Therefore 

f(J, 2 , l )  = (1  + tanh 2 4 .  (4.19) 

Using (4.17) and (4.19) we get for f ( J ,  b = 2, d )  

f ( J ,  2, d )  = (1 + tanh 2J )  + s2  In 2. (4.20) 

Evaluating (4.20) at the fixed point (4.10) we find 

f ( J ,  2, E )  = 2 - 4 e - 2 / E  + ~2 In 2 (4.21) 

which gives the Ising magnetic eigenvalue 

y y  = 1 + E - (2/1n 2) (4.22) 

We have used b = 2 in obtaining y?, (4.22), since we used b = 2 in obtaining f(J, 6, l), 
(4.19), and since there is no strong b dependence in the fixed point (4.10). That is, 
b appears only as a coefficient and not within the exponent of J * .  Note that this result, 
(4.22), agrees with the result obtained by Bruce and Wallace (1981) using a droplet 
model approach to an Ising system in d = 1 + E dimensions. 
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Now v2 is related to the magnetic eigenvalue y y  via 

r / 2 =  d + 2 - 2 y r  

so that 

d - 2 +  7 2  = 2 ( d  - y p ) .  

(4.23) 

(4.24) 

Using the expression for y r ,  (4.22), in (4.24) and noting that d = 1 + E ,  we find 

d - 2 +  q 2 =  (4/ln 2) e-”€. (4.25) 

Comparing with vl, (4.14), we see that the scaling expression vI = 2 / ( d - 2 +  q2)  does 
not hold near d = 1. 

Coniglio and Klein ( 1980) have studied site-bond correlated percolation using a 
Migdal-Kadanoff decimation of a Potts model in two dimensions. Based on their 
results for v, (=0.535),  and the exact result for the Ising model in two dimensions 
v2 = a, the scaling relation v 1  = 2/(  d - 2 + v2)  apparently does not hold for d = 2. This 
discrepancy cannot be accounted for by appealing to the uncertainty which arises 
naturally when the Migdal-Kadanoff approximation is used. 

It is possible that this failure of the scaling relation in 1 + ~  and two dimensions 
can be explained in part by the work of Fucito and Parisi (1981). They showed that 
the fixed point of a pure percolation model in two dimensions is unstable with respect 
to a (p4 interaction. That is, the coupling associated with this interaction becomes 
relevant in two dimensions. If this is also true of the quartic couplings in our model; 
then it may be reasonable to assume that the scaling relation is still valid in three 
dimensions. 

Finally, we would like to find a value for v1 near d = 1 to compare with that 
obtained to order one loop near d = 6 ,  namely v1 = 0. To do this, we use the same 
procedure as used in obtaining v2. That is, assume that the RG equation for the ghost 
field H is an analytic function of H :  

H ’ = f ( p ,  J ,  d ,  b ) H + O ( H * ) .  (4.26) 

Again, expand f about d = 1 and get 

f(p, J ,  b, d )  f(pt J,  b, 1 + af(p = 1, J (4.27) 

As before, f(p = 1, J = a, b, d )  = bd and we are left to evaluate f(p, J ,  b, 1). 
The function f ( p , J ,  b, 1) is obtained by considering paths for percolation to the 

ghost site from a given site on the lattice. If we take only first-order terms in H, since 
we are working near the fixed point H = 0, then the probability P of percolating from 
a given site to the ghost site is 

P = H + 2 [ p e ’ / ( e ’ + e - ’ ) ] ~ + 2 [ p  e ’ / ( e J + e - J ) ] 2 ~ + .  . . . (4.28) 

a, b, d ) / a d ( d =  1 E. 

Summing the infinite series gives 

p = H [ (  1 + pg ) / ( 1 - Pg 11 (4.29) 

where g = e’/(e’ +e-’). Similarly on the rescaled lattice, this probability is 

P = H‘ + 2[p’ e”/(e” + e-”)]H‘ + 2[P e”/( e” + e-”)]H’ + . . . . (4.30) 

Again summing the infinite series gives 

P = H ’ [ ( l  + p ’ g ’ ) / ( l - p ’ g ‘ ) ]  (4.31) 
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where g' = eJ'/(e"+e-J'). Equating probabilities to preserve the free energy gives 

H[(1 +%)/(I  -pg)l=H'[(l  +p'g')/(l  -p'g')l (4.32) 

from which we can determine f(p, J,  6 , l )  to be 

f ( p ,  J, 671) =[(I +pg) / ( l  -pg)l[(l+p'g')l(l -p'g')l-'. (4.33) 

In one dimension where all bonds on the lattice are in series, the rescaling of pg is 
the same in form as (4.2), i.e. p'g'=pbgb. Using this (4.33) becomes 

f(p, J, b, 1) = [ ( l+pg) / ( l  -pg)l{[l+(pg)bl/[l-(pg)bl}-' 

f ( p ,  J, b, 1) b[l + ( b3 l2 -  b1l2) e-"']. 

(4.34) 

(4.35) 

which when evaluated at the fixed point (4.10) and (4.12) gives to leading order in E 

Using (4.35) and f(p = 1 ,  J =CO, 6, d )  = bd gives for the RG equation for H 

H ' / H  = b[ 1 + ( b3l2 - b'/*) + b~ In b. (4.36) 

This in turn gives for the magnetic eigenvalue y y  to leading order in E 

y r  = 1 + E + b'l2( b - I )  e-'/"/ln b. (4.37) 

Finally from (4.37) we find for vl  
v1 = 1 - E  -[2b112(b- l ) / ln  b] e-'/E (4.38) 

or 

v 1  = 2- d - [ b ' / 2 ( b -  1)/1n b'/ ']  e-'/' (4.39) 

from which we see that 71' is not zero near d = 1.  
Decimation of the Potts model in an external field forces the introduction of an 

additional coupling into the Potts Hamiltonian. This coupling is necessary in order to 
close the RG equations (Stephen 1976, Wu 1977). This method of calculating v1 
avoids that necessity, at least to first order in E = d - 1.  

5. Conclusions 

A novel approach has been used to obtain a Lagrangian for site-bond percolation. 
By writing the pair correlation function in terms of the operators a ( r )  and E(r) ,  
eliminating all diagrams with closed loops of arrows, and using a Gaussian transforma- 
tion, a field theory for the pair correlation was developed. 

Using the renormalisation group on this Lagrangian the exponents v and 77 were 
obtained for both percolation and Ising fields. To first order in the E = (6 - d) expansion 
the scaling relation v1 =2/(d-2)  was shown to hold. Then, using the equations of 
motion, this scaling relation was shown to hold to all orders in perturbation theory 
for d > 4 .  

Within a one-loop calculation, the quartic couplings other than the pure Ising 
coupling w were shown to be highly irrelevant for a' d 4. On this basis and again using 
the equations of motion, the scaling relation v 1  = 2/(d - 2 + q2)  was shown to hold to 
all orders for d < 4. 

The exponent v l  was calculated to leading order in E = d - 1 using a Migdal- 
Kadanoff transformation. A new method for calculating the magnetic eigenvalue, 
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which appeals to the analyticity of the RG equation of the magnetic field for its 
justification, was used to calculate 7, also to leading order in E.  

Although the scaling relation v1 = 2/( d - 2 + 772) was shown not to hold near d = 1 
and 2, it is still reasonable to assume that it is valid near d = 3, based on the irrelevance 
of the quartic couplings for d d 4 and the work of Fucito and Parisi for d = 2. Since 
772 is small for the 'physical' dimension d = 3 ( 772 = 0.03), it is probably safe to assume 
that v 1  = 2 for d = 3. 
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Appendix 1 

A1.1. 

To carry out the trace over a ( r )  and d ( r )  we break the integrand of (2.5), i.e. G, into 
three pieces: those not containing either rl or r2,  those containing only r l ,  and those 
containing only r2 .  The pair correlation function becomes 

where 

icp2 c p 3  
- cp+---. f ( c p , ) =  (i)"-'-- 

n = l  m! 2! 3! 
(cp)"  CO 
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Similarly, carrying out the trace over the terms in a,  and a2 we get, respectively, 

T r a ,  exp(cp,a,+cp,d,) = T r  a l ( l+f(cpl)al)( l+f((ol)dl)  

= nl[f(cpl)+if(cpl)f(~l)I  c F 1  (A6) 

and 

Tr  d 2  exp(cp2a2+cp2d2) e-F2=Tr d2(1 +f(Q2)az)(l + f ( p 2 ) d 2 )  e-F2 

= n2[f(cp2) + i f ( c p 2 ) f ( c p d I  (A7) 

Finally, substituting the expression for ? I ,  (2.6),  the expression for eFi from (A4),  
and the two remaining terms contributing to G from (A6) and (A7),  we get 

~ ( r l ,  rZ)=p J g g ~ c p  exp(-T c,~cp,.Vcp,+c~cp,cp,+ln[1+nl(cp,,fjq,)1) 

X n(rl)n(r,)[f((ol)f(Qz)]+higher-order terms ('48) 
where c , ,  c7 are constants. 

f ( + ) ,  (A8) becomes 
Expanding out the In term and keeping only the lowest-order terms in f ( q )  and 

c 

in (G). We have ignored the terms with leading factors of s,, s2 and sls2 as these lead 
to  higher-order correlation functions in (o, cp and x. Expanding the argument of In as 
cosh ,y - 1 +&,y2, and therefore In cosh ,y -,y2/2, the right-hand side of (A10) becomes 

n exp[xlcplcpl -+ixl(cp,+f +qIcpf) +xf + S ~ f + f l .  
I 

This is then substituted into (G) and the continuum limit taken to get (2.15). 

Appendix 2 

T o  determine if the quartic couplings h, k,  n and m are irrelevant, we must consider 
the /3 functions of these couplings. If the matrix of coefficients of these p functions 
is positive definite, then the couplings are irrelevant. 

Evaluating the Feynman diagrams for the bare vertex functions to  order one loop, 
we find 

n,=Z$(4rr)-3 l n ( A / x ) ( n - 8 g ~ n + 6 u ~ n - 8 g ~ m - 2 0 u o g o h + 4 u ~ k ) ,  ( A l l )  



Hyperscaling relation in site-bond correlated percolation 195 

mR=Zi(4.ir)-3 ln (A/x ) (m-9g&1+6u ;m -3g;n - 16uogoh+2u;k),  

kR = Z,Z, ( 4 ~ ) - ~  In( .I/ x)( k - g i  k + 5 U; k - 4g0 U&). 

(A121 

('414) 

hR = Z:'2Z3,/2 ( 4 ~ ) - ~  ln(A/x) (  h - 6gih  + ugh +gouon + 2g,uom + 6gouok), (A13) 

The  quartic couplings on the right-hand side of these equations a re  the bare dimension- 
ful coupling constants. 

Evaluating these expressions at  the relevant fixed point in go and uo, (3.12), where 
the wavefunction renormalisation constants Z, and Z, are  equal to unity, and in terms 
of the bare dimensionless couplings, (A1 1)-(A14) become 

(A1 5) 
- 

In( A/ x ) (  -5 no - 8 rno - 1 OJ2ho + 2 ko), *,-2+r + &il -z+€  
n R =  (1 

mR = m~,\-~+' + 

k R =  k ( , K 2 + E  + ln(. , /x)(-2J2h,,+~k,).  ('418) 

ln( I\/ x ) (  -3 n,, - 6 ~ 4 ~  - 8v'2h,, + k o ) ,  (A16) 

h R =  h,,2\-21'+e.A-2fF ln (n /x) ( l t '2no+J2mo-3h,+3t '2ko) ,  (A17) 
- - 

From these we find for the /3 functions 

/3,, = ( 2  - & ) n o +  e(5n0 + 8mo+ lO&h,- 2kJ. (A191 

('420) Pin = (2  - e )  mo + e ( 3n0 + 6mo + 8v 2hl, - k o ) ,  

/3h = (2  - & ) h o  + e(-:J2no -4 2mlj + 3ho - 3v 2kJ, (A2 1) 

P k  =(2-s)k,+E(2JZho-Sktr) ,  (A22) 

i- 

- - - 

-J& d 5 &  2 + 2 &  -3dirze . 

It is this matrix which must be checked for positive definiteness. To be positive definite, 
the four invariants trace, second minor determinant, third minor determinant and the 
determinant must be greater than zero. For these quantities we find 

trace = 8 + 8.5 E, (A24) 
second minor determinant = 24 + 5 1 e + Y F ~ ,  
third minor determinant = 32+ 1028 +98e2-2e'.  

determinant = 16 + 68.5 + 290e2 + 204e3 + 41 e'. 

As can be readily verified, these are all positive for all ~ 6 6 0 .  Therefore, if this 
one-loop calculation can be trusted, the quartic couplings are highly irrelevant for d d 4. 
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